13 research outputs found

    Solving a variational image restoration model which involves L∞ constraints

    Get PDF
    In this paper, we seek a solution to linear inverse problems arising in image restoration in terms of a recently posed optimization problem which combines total variation minimization and wavelet-thresholding ideas. The resulting nonlinear programming task is solved via a dual Uzawa method in its general form, leading to an efficient and general algorithm which allows for very good structure-preserving reconstructions. Along with a theoretical study of the algorithm, the paper details some aspects of the implementation, discusses the numerical convergence and eventually displays a few images obtained for some difficult restoration tasks

    A high-order integral solver for scalar problems of diffraction by screens and apertures in three-dimensional space

    Get PDF
    We present a novel methodology for the numerical solution of problems of diffraction by infinitely thin screens in three-dimensional space. Our approach relies on new integral formulations as well as associated high-order quadrature rules. The new integral formulations involve weighted versions of the classical integral operators related to the thin-screen Dirichlet and Neumann problems as well as a generalization to the open-surface problem of the classical Calderón formulae. The high-order quadrature rules we introduce for these operators, in turn, resolve the multiple Green function and edge singularities (which occur at arbitrarily close distances from each other, and which include weakly singular as well as hypersingular kernels) and thus give rise to super-algebraically fast convergence as the discretization sizes are increased. When used in conjunction with Krylov-subspace linear algebra solvers such as GMRES, the resulting solvers produce results of high accuracy in small numbers of iterations for low and high frequencies alike. We demonstrate our methodology with a variety of numerical results for screen and aperture problems at high frequencies—including simulation of classical experiments such as the diffraction by a circular disc (featuring in particular the famous Poisson spot), evaluation of interference fringes resulting from diffraction across two nearby circular apertures, as well as solution of problems of scattering by more complex geometries consisting of multiple scatterers and cavities

    A generalized Calderon formula for open-arc diffraction problems: theoretical considerations

    Get PDF
    We deal with the general problem of scattering by open arcs in two-dimensional space. We show that this problem can be solved by means of certain second-kind integral equations of the form ÑS[φ] = ƒ, where Ñ and S are first-kind integral operators whose composition gives rise to a generalized Calderón formula of the form ÑS = J^τ_0 + K in a weighted, periodized Sobolev space. (Here J^τ_0 is a continuous and continuously invertible operator and K is a compact operator.) The ÑS formulation provides, for the first time, a second-kind integral equation for the open-arc scattering problem with Neumann boundary conditions. Numerical experiments show that, for both the Dirichlet and Neumann boundary conditions, our second-kind integral equations have spectra that are bounded away from zero and infinity as k → ∞; to the authors’ knowledge these are the first integral equations for these problems that possess this desirable property. This situation is in stark contrast with that arising from the related classical open-surface hypersingular and single-layer operators N and S, whose composition NS maps, for example, the function ϕ = 1 into a function that is not even square integrable. Our proofs rely on three main elements: algebraic manipulations enabled by the presence of integral weights; use of the classical result of continuity of the Cesàro operator; and explicit characterization of the point spectrum of J^τ_0, which, interestingly, can be decomposed into the union of a countable set and an open set, both of which are tightly clustered around -1/4. As shown in a separate contribution, the new approach can be used to construct simple, spectrally accurate numerical solvers and, when used in conjunction with Krylov-subspace iterative solvers such as the generalized minimal residual method, it gives rise to a dramatic reduction in the number of iterations compared with those required by other approaches

    Pump-probe scheme for optical coherence tomography using indocyanine green mixed with albumin or human plasma

    Get PDF
    Use of indocyanine green (ICG) in a pump-probe scheme for OCT is proposed. The study illustrates that ICG in protein solution shows unusual pump-probe imaging potential, indicating its usefulness as a contrast agent for OCT

    Second-Kind integral solvers for TE and TM problems of diffraction by open-arcs

    Get PDF
    We present a novel approach for the numerical solution of problems of diffraction by open arcs in two dimensional space. Our methodology relies on composition of {\em weighted versions} of the classical integral operators associated with the Dirichlet and Neumann problems (TE and TM polarizations, respectively) together with a generalization to the open-arc case of the well known closed-surface Calder\'on formulae. When used in conjunction with spectrally accurate discretization rules and Krylov-subspace linear algebra solvers such as GMRES, the new second-kind TE and TM formulations for open arcs produce results of high accuracy in small numbers of iterations and short computing times---for low and high frequencies alike.Comment: 20 page

    High-Order Integral Equation Methods for Diffraction Problems Involving Screens and Apertures

    Get PDF
    This thesis presents a novel approach for the numerical solution of problems of diffraction by infinitely thin screens and apertures. The new methodology relies on combination of weighted versions of the classical operators associated with the Dirichlet and Neumann open-surface problems. In the two-dimensional case, a rigorous proof is presented, establishing that the new weighted formulations give rise to second-kind Fredholm integral equations, thus providing a generalization to open surfaces of the classical closed-surface Calderon formulae. High-order quadrature rules are introduced for the new weighted operators, both in the two-dimensional case as well as the scalar three-dimensional case. Used in conjunction with Krylov subspace iterative methods, these rules give rise to efficient and accurate numerical solvers which produce highly accurate solutions in small numbers of iterations, and whose performance is comparable to that arising from efficient high-order integral solvers recently introduced for closed-surface problems. Numerical results are presented for a wide range of frequencies and a variety of geometries in two- and three-dimensional space, including complex resonating structures as well as, for the first time, accurate numerical solutions of classical diffraction problems considered by the 19th-century pioneers: diffraction of high-frequency waves by the infinitely thin disc, the circular aperture, and the two-hole geometry inherent in Young's experiment
    corecore